• دانلود تحقیق، مقاله و پروژه های دانشجویی به صورت کاملا رایگان
  • اشتراک فایل توسط پدید آورندگان جهت استفاده علمی دانشجویان و علاقه مندان
  • امکان ارسال لینک پروژه های جدید به ایمیل شخصی شما
  • رکورد دار تعداد اعضا با بیش از 270 هزار عضو فعال
  • منتخب بهترین وب سایت علمی فارسی زبان در جشنواره وب ایران

مراحل فرايند کشف دانش از پايگاه داده ها

دانلود پایان نامه داده کاوی، مفاهیم و کاربرد

تاریخ : ۷ بهمن ۱۳۹۳

مراحل فرايند کشف دانش از پايگاه داده ها

 

عنوان پایان نامه : داده کاوی، مفاهیم و کاربرد

قالب بندی : Word

قیمت : رایگان

شرح مختصر : امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کردواطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد . با استفاده از پرسش های ساده در SQL و ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شند ، هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است . از سوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند و سپس بر اساس گزارشات مشاهده شده به اثبات یا رد فرضیه می پردازند ، در حالی که امروزه نیاز به روشهایی است که اصطلاحا به کشف دانش بپردازند یعنی با کمترین دخالت کاربر و به صورت خودکار الگوها و رابطه های منطقی را بیان نمایند . داده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند . در داده کاوی از بخشی از علم آمار به نام تحلیل اکتشافی داده ها استفاده می شود که در آن بر کشف اطلاعات نهفته و ناشناخته از درون حجم انبوه داده ها تاکید می شود . علاوه بر این داده کاوی با هوش مصنوعی و یادگیری ماشین نیز ارتباط تنگاتنگی دارد ، بنابراین می توان گفت در داده کاوی تئوریهای پایگاه داده ها ، هوش مصنوعی ، یادگیری ماشین و علم آمار را در هم می آمیزند تا زمینه کاربردی فراهم شود . باید توجه داشت که اصطلاح داده کاوی زمانی به کار برده می شود که با حجم بزرگی از داده ها ، در حد مگا یا ترابایت ، مواجه باشیم . در تمامی منابع داده کاوی بر این مطلب تاکید شده است . هر چه حجم داده ها بیشتر و روابط میان آنها پیچیده تر باشد دسترسی به اطلاعات نهفته در میان داده ها مشکلتر می شود و نقش داده کاوی به عنوان یکی از روشهای کشف دانش ، روشن تر می گردد .

فهرست :

چکیده

مقدمه

فصل اول – مفاهیم داده کاوی

مدیریت ذخیره سازی و دستیابی اطلاعات

ساختار بانک اطلاعاتی سازمان

داده کاوی (Data Mining)

مفاهیم پایه در داده کاوی

تعریف داده کاوی

مراحل فرایند کشف دانش از پایگاه داده ها

الگوریتم های داده کاوی

آماده سازی داده برای مدل سازی

درک قلمرو

ابزارهای تجاری داده کاوی Tools DM Commercial

منابع اطلاعاتی مورد استفاده

محدودیت های داده کاوی

حفاظت از حریم شخصی در سیستم‌های داده‌کاوی

فصل دوم : کاربردهای داده کاوی

کاربرد داده کاوی در کسب و کار هوشمند بانک

داده کاوی در مدیریت ارتباط با مشتری

کاربردهای داده کاوی در کتابخانه ها و محیط های دانشگاهی

داده کاوی و مدیریت موسسات دانشگاهی

داده کاوی و مدیریت بهینه وب سایت ها

داده‌کاوی و مدیریت دانش

کاربرد داده‌کاوی در آموزش عالی

فصل سوم – بررسی موردی۱: وب کاوی

معماری وب کاوی

مشکلات و محدودیت های وب کاوی در سایت های فارسی زبان

محتوا کاوی وب

فصل چهارم – بررسی موردی

داده کاوی در شهر الکترونیک

زمینه دادهکاوی در شهر الکترونیک

کاربردهای داده کاوی در شهر الکترونیک

چالشهای داده کاوی در شهر الکترونیک

مراجع و ماخذ

دانلود پایان نامه داده کاوی، مفاهیم و کاربرد

تاریخ : ۲۰ تیر ۱۳۹۳

مراحل فرايند کشف دانش از پايگاه داده ها

 

عنوان پایان نامه : داده کاوی، مفاهیم و کاربرد

قالب بندی : PDF

قیمت : رایگان

شرح مختصر : امروزه با گسترش سیستم هاي پايگاهی و حجم بالاي داده ها ي ذخیره شده در اين سیستم ها ، نیاز به ابزاري است تا بتوان داده هاي ذخیره شده را پردازش کردواطلاعات حاصل از اين پردازش را در اختیار کاربران قرار داد. با استفاده از پرسش هاي ساده در SQL و ابزارهاي گوناگون گزارش گیري معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیري در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهاي مفید را در میان حجم انبوه داده ها تشخیص دهند و يا اگر قادر به اين کار هم با شند ، هزينه عملیات از نظر نیروي انسانی و مادي بسیار بالا است. از سوي ديگر کاربران معمولا فرضیه اي را مطرح می کنند و سپس بر اساس گزارشات مشاهده شده به اثبات يا رد فرضیه می پردازند ، در حالی که امروزه نیاز به روشهايی است که اصطلاحا به کشف دانش بپردازند يعنی با کمترين دخالت کاربر و به صورت خودکار الگوها و رابطه هاي منطقی را بیان نمايند. داده کاوي يکی از مهمترين اين روشها است که به وسیله آن الگوهاي مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند. در داده کاوي از بخشی از علم آمار به نام تحلیل اکتشافی داده ها استفاده می شود که در آن بر کشف اطلاعات نهفته و ناشناخته از درون حجم انبوه داده ها تاکید می شود . علاوه بر اين داده کاوي با هوش مصنوعی و يادگیري ماشین نیز ارتباط تنگاتنگی دارد ، بنابراين می توان گفت در داده کاوي تئوريهاي پايگاه داده ها ، هوش مصنوعی ، يادگیري ماشین و علم آمار را در هم می آمیزند تا زمینه کاربردي فراهم شود. بايد توجه داشت که اصطلاح داده کاوي زمانی به کار برده می شود که با حجم بزرگی از داده ها ، در حد مگا يا ترابايت ، مواجه باشیم . در تمامی منابع داده کاوي بر اين مطلب تاکید شده است. هر چه حجم داده ها بیشتر و روابط میان آنها پیچیده تر باشد دسترسی به اطلاعات نهفته در میان داده ها مشکلتر می شود و نقش داده کاوي به عنوان يکی از روشهاي کشف دانش ، روشن تر می گردد.
فهرست :

چکیده

مقدمه

فصل اول – مفاهیم داده کاوی

مديريت ذخیره سازی و دستیابی اطلاعات

ساختار بانک اطلاعاتی سازمان

داده کاوی (Data Mining)

مفاهیم پايه در داده کاوي

تعريف داده کاوي

مراحل فرايند کشف دانش از پايگاه داده ها

الگوريتم هاي داده کاوي

آماده سازی داده برای مدل سازی

درک قلمرو

ابزارهاي تجاري داده کاوي Tools DM Commercial

منابع اطلاعاتی مورد استفاده

محدوديت هاي داده کاوي

حفاظت از حريم شخصی در سیستم های داده کاوی

فصل دوم کاربردهای داده کاوی

کاربرد داده کاوي در کسب و کار هوشمند بانک

داده کاوي درمديريت ارتباط بامشتري

داده کاوي و مديريت موسسات دانشگاهی

داده کاوی و مديريت بهینه وب سايت ها

داده کاوی و مديريت دانش

کاربرد داده کاوی در آموزش عالی

فصل سوم – بررسی موردی وب کاوی

معماری وب کاوی

مشکلات ومحدوديت هاي وب کاوي در سايت هاي فارسی زبان

محتوا کاوی وب

فصل چهارم – بررسی موردی   داده کاوی در شهر الکترونیک

زمینه دادهکاوی در شهر الکترونیک

کاربردهاي داده کاوي در شهر الکترونیک

چالشهاي داده کاوي در شهر الکترونیک

مراجع و ماخذ