عنوان مقاله : سیستم های خبره
قالب بندی : Word
قیمت : رایگان
شرح مختصر : اولین قدم در حل هر مسئله ای تعریف دامنه یا محدوده آن است. این نکته همانطور که در مورد روشهای برنامه نویسی متعارف صحت دارد، در مورد هوش مصنوعی نیز درست است. اما به خاطر اسراری که از قبل در مورد هوش مصنوعی وجود داشته، هنوز هم برخی مایلند این عقیده قدیمی را باور کنند که ” هر مسئله ای که تا به حال حل نشده باشد یک مسئله هوش مصنوعی است”. تعریف متداول دیگری به این صورت وجود دارد ” هوش مصنوعی کامپیوترها را قادر می سازد که کارهایی شبیه به آنچه در فیلمها دیده می شود انجام دهند”.چنین تفکراتی در دهه ۱۹۷۰ میلادی رواج داشت، یعنی درست زمانی که هوش مصنوعی در مرحله تحقیق بود ولی امروزه مسائل واقعی بسیاری وجود دارند که توسط هوش مصنوعی و کاربردهای تجاری آن قابل حلند.
اگرچه برای مسائل کلاسیک هوش مصنوعی از جمله ترجمه زبانهای طبیعی، فهم کلام و بینایی هنوز راه حل عمومی یافت نشده است، ولی محدود کردن دامنه مسئله می تواند به راه حل مفیدی منجر شود. به عنوان مثال، ایجاد یک « سیستم زبان طبیعی ساده » که ورودی آن جملاتی با ساختار اسم، فعل و مفعول باشد کار مشکلی نیست. در حال حاضر، چنین سیستمهایی به عنوان یک واسط در ایجاد ارتباط کاربر پسند با نرم افزارهای بانک اطلاعاتی و صفحه گسترده ها به خوبی عمل می کنند. در حقیقت (پاره) جملاتی که امروزه در برنامه های کامپیوتری مخصوص بازی و سرگرمی به کار می روند توان بالای کامپیوتر در فهم زبان طبیعی را به نمایش می گذارند.
فهرست :
سیستم خبره چیست؟
طراحی سیستمهای خبره
چرا ما یک سیستم خبره می سازیم؟
مزایای سیستم خبره
مراحل ایجاد یک سیستم خبره
مهندسی نرم افزار و سیستمهای خبره
چرخه حیات سیستم خبره
هزینه های نگهداری
مدل آبشاری
مدل کدنویسی و اصلاح
مدل افزایشی
مدل مارپیچی
یک مدل چرخه حیات تفصیلی
طراحی دانش
خلاصه
عنوان پایان نامه: کاربردهای منطق فازی در یادگیری ماشین
قالب بندی : PDF
قیمت : رایگان
شرح مختصر : بيگمان رايانه در چند دهه كنوني از عوامل اصلي و كليدي پيشرفت شناخته شده است. گردش درست امور، سرعت (تندي) در كارها و روشهاي اداري، بهرهوري و خدمات عمومي، دسترسي به اطلاعات شركتها همه از مزایای رایانههاست. امروزه سازمانها جهت پردازش كارهايي چون نگهداري و به روز رساني حسابها و داراييهای خود، راهشان را به سوي استفاده از رایانهها باز نمودهاند. كاربردهایي چون لوازم خانگي، خودروها، هواپيماها و ابزار صنعتي، دستگاههاي الكتريكي، كنترل انتقال نيرو و خطوط كارخانهها و گيرنده ماهواره توسط رايانه سرویسدهی میشوند. همزمان با پيشرفت و سازماندهي سازمانها و بنگاههاي كوچك و متوسط، كشاورزي، صنعتي و … خدمات رايانهاي هر روز نفوذ خود را در زندگي اجتماعي و اقتصادي انسان نیز نشان ميدهند. ولی دیگر رایانههای دومنطقی صفر و یک جوابگوی نیازهای بشر نیست و باید سیستمهایی ساخت که به به شیوههای چندمقداری تفکر و تعلم انسان نزدیک باشد و ابهام و عدم قطعیت را هم شامل شود. در این راستا منطق جدیدی به نام منطق فازی توسط پروفسور لطفیزاده معرفی شد و از آن پس انبوه مقالات برای پیاده سازی این منطق در سیستمهای کامپیوتری و الگوریتمهای موجود، ارائه شد. هدف ما در این پژوهش هم بررسی جامعی پیرامون این مبحث و کاربردهای آن در یادگیری ماشین است. لذا پس از بیان تعاریف و تاریخچه و انواع روشهای منطق فازی و یادگیری ماشین، مروری بر مقالات معتبر و جدید ارائه شده در این زمینه داشته و ایدههای جدیدی که داده شده است را خواهیم گفت.
کلمات کلیدی : محاسبات نرم، منطق فازی، سیستم های فازی، یادگیری ماشین چیست؟، یادگیری با ناظر، یادگیری بدون ناظر، یادگیری تقویتی، یادگیری نیمه نظارتی، انواع ماشین های یادگیرنده، روشهای یادگیری عامل، طراحی یک سیستم یادگیری، تکنیکهای یادگیری ماشین، درخت تصمیم، کاربرد درخت تصمیم، کاربردهای شبکه عصبی مصنوعی، مزیت های شبکه عصبی مصنوعی، پایه های منطق محاسباتی، الگوریتم ژنتیک، سیستم خبره، یادگیری بیزین، ماشین بردار پشتیبان، مدل هوش محاسباتی، سیستم های رابطه ای عصبی ،شبکه های مبتنی بر منطق فازی، استنتاج قوانین فازی، الگوریتم های هوشمند، مزایای سیستم خبره، کاربردهای سیستم خبره، مزایای الگوریتم ژنتیک، نقاط ضعف الگوریتم ژنتیک، مسئله درخت اشتاینر، فیلتر کالمن، فیلتر کالمن فازی،